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A metal-mediated sp? C—N bond forming reaction is of great
interest in organic synthesis since the molecules containing aryl-
and heteroarylamine units are prevalent in biological and pharma-
ceutical sciences The palladium-catalyzed amination of aryl
halides, that is Buchwald—Hartwig amination,® as well as a copper-
mediated one®* is now the most powerful and reliable method for
the synthesis of these target structures. On the other hand, transition-
metal-catalyzed direct amination of arenes and heteroarenes has
received much attention as a complementary and potentially more
efficient route to the above amines. Although palladium® and
rhodium® complexes are known to catalyze this type of transforma-
tions, most of them are restricted in an intramolecular fashion.3>—6
The efforts by several groups have overcome the limitation and
achieved the intermolecular versions using the copper” and silver®
salts. However, these processes till suffer from harsh conditions
such as higher reaction temperature’® and use of a stoichiometric
amount of metal oxidant.”°® Thus, further development for direct
C—H amination is strongly desired.

Herein, we introduce chloroamine® as a readily available and
effective nitrogen source for heteroaromatic C—H functionalization:
the copper-catalyzed direct amination of azoles with chloroamines
is described. Use of this type of reagent under copper catalysis
enables the formation of heteroaryl—amino linkages even at room
temperature so as to provide a rapid and straightforward access to
the heteroarylamines of quite importance in biological and medicinal
chemistry.*®

Table 1. Copper-Catalyzed Direct Amination of Various
1,3,4-Oxadiazoles 1 with 4-Chloromorpholine (2a)*

10 mol % Cu(acac),

-N /N 10mol % b N
)NL\> + C—N O o5 Py NN o
o N 2.0 equiv LiO-+Bu o -/
R 1 2a toluene, rt, 2 h 3
entry R1 3, yield (%)°
1 Ph (1a) 3aa, 81
2 4-M eC6H4 (1b) 3ba, 70
3 4-MeOCgH, (1€) 3ca, 72
4 4-CF5CoHa (1d) 3da, 62
5 4-CICeH4 (1€) 3ea, 84
6 1-naphthyl (1f) 3fa, 83
7 Ph(CH,). (19) 3ga, 63

2 A mixture of Cu(acac), (0.050 mmol), bpy (0.050 mmol), 1 (0.50
mmol), 2a (0.75 mmol), and LiO-t-Bu (1.0 mmol) in toluene (3.0 mL)
was dtirred at room temperature for 2 h under Ny. P Yield of isolated
product.

Initially, we selected 2-phenyl-1,3,4-oxadiazole (1a) and 4-chlo-
romorpholine (2a) as the starting materials because the expected
product skeleton, amino-1,3,4-oxadiazole, is among the most
interesting heteroarylamines exhibiting a broad spectrum of biologi-
cal activity.™* After the extensive screening of various transition
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metals, ligands, and bases, we were pleased to find that a
combination of Cu(acac),/bpy (bpy = 2,2"-bipyridine) catalyzed
the amination of 1a with 2a in the presence of LiO-t-Bu as a base
to furnish 3aa in 81% vyield (Table 1, entry 1).*? Notably, the
reaction completed within 2 h even at room temperature. The
oxadiazoles bearing electron-donating methyl 1b and methoxy
groups 1c as well as the simple one underwent the amination very
smoothly (entries 2 and 3). The electron-withdrawing trifluoro-
methyl and chloro substituents did not interfere with the reaction
(entries 4 and 5). In particular, 1e was transformed to 3ea in good
yield with the carbon—chloride moiety left intact, which could enjoy
further elaboration. A bulky naphthal ene motif was also compatible
toward the reaction (entry 6). Moreover, the aiphatic phenethyl-
substituted 1g coupled with 2a to form the heteroarylamine 3ga in
an acceptable yield (entry 7).

Under the standard reaction conditions, a variety of N,N-
dialkylchloroamines 2 were examined for the direct amination of
la (Table 2). Thereactions with cyclic 2b and acyclic chloroamines
2c proceeded without any difficulties to afford amino-1,3,4-
oxadiazoles 3ab and 3ac (entries 1 and 2). Benzyl and Boc
protections on nitrogen were tolerant so that the orthogonal
additional functionalization after their appropriate deprotection
would be possible (entries 3 and 4). In addition, the chloroamine
2f containing two C—Cl bonds was also available for use (entry
Table 2. Copper-Catalyzed Direct Amination of
2-Phenyl-1,3,4-oxadiazole (1a) with Various Chloroamines 2%

10 mol % Cu(acac), 1

-N R" 10 mol % by NN R
N| S + C—N > o0y P S—N
)\ H2 2.0 equiv LiO-+Bu o 2
pn” 0 R toluene, rt, 2 h P R
1a 2 h 3
entry 2 3, yield (%)°

1 CI—NC> 2b JI\’Z\%ND

Ph 3ab 68
~N n-Bu
n-Bu N 2 ;
N | >N
2 cI—N, o X on AN
n-Bu 3ac 62
Ph
,—Ph Nn-N /
3 Cl—N 2d P& S—N
Me Ph” O  Me 3a4 69
N
/\ N N
4 CI—N  NBoc 2e P >N NBoc
/ ph” O 3ae 63
Ph
-N 0
/\ NN o
¢ CI-N  N-CI 2f | >N N
i Ph)\o 3af 51 NN
a

@ See Table 1 for the reaction conditions. P Yield of isolated product.
¢ Chloroamine 2f as the limiting reagent. With 20 mol % of Cu(acac),/
bpy, 2.4 equiv of 1a, and 4.8 equiv of LiO-t-Bu.
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5). Thus, a symmetrical N,N’-bis(heteroaryl)piperazine 2af was
easily prepared.*®

Next, we turned our attention to the amination of benzoxazole
(4a) (Table 3).** Under the same conditions as those shown in
Tables 1 and 2, 4a reacted with 2a sluggishly, and the desired 5aa
was detected in only 17% GC yield (entry 1). However, to our
delight, the simple replacement of LiO-t-Bu with NaO-t-Bu
significantly improved the reaction efficiency to afford 5aa in 76%
yield (entry 2). By using the modified protocol, benzoxazoles 4b—d
having the substitutions at the 5-position were aminated effectively
(entries 3—5), and the piperizine and dibutylamine moieties also
could be introduced to the benzoxazole core (entries 6 and 7).*°

Table 3. Copper-Catalyzed Direct Amination of Various
Benzoxazoles 42

10 mol % Cu(acac), R

R N R" 10 mol % b N R
. o DPY ,
Ny o+ — \>_
\@O> CI—N 2.0 equiv NaO-#+Bu \©:O N

2
4 2 R toluene, 11, 2 h 5 R?

entry R4 2 5, yield (%)°
1° H (4a) 2a Saa, 17¢

2 4da 2a 5aa, 76

3 Ph (4b) 2a 5ba, 62

4 Me (4c) 2a Sca, 53

5 Cl (4d) 2a 5da, 73

6 4a 2b 5ab, 66

7 4a 2c 5ac, 38

2 A mixture of Cu(acac), (0.050 mmol), bpy (0.050 mmol), 4 (0.50
mmol), 2 (0.75 mmol), and NaO-t-Bu (1.0 mmol) in toluene (3.0 mL)
was dtirred at room temperature for 2 h under Ny. P Yield of isolated
product. € With LiO-t-Bu instead of NaO-t-Bu. ¢ GC yield.

While the present chloroamines are readily accessible from the
corresponding amines and bleach,'® a more convenient chlorination/
direct amination sequence is operative.®® Namely, upon the exposure
of 2a generated in situ through the chlorination of morpholine with
N-chlorosuccinimide (NCS) in toluene to a mixture of 1a, Cu(acac),/
bpy, and LiO-t-Bu, 3aa was produced in a dightly lower yield
(Scheme 1). Amino-1,3,4-oxazole 3ea was also synthesized in the
same manner.

Scheme 1

— 11 equi
HN 1A equvNGS | 52 ] (arvo, ref 9b)
\__/ toluene, rt, 30 min

dark J without purification

3aa 73% or 3ea 72%

1aorie
cat. Cu/bpy, LiO-t-Bu

Although the exact reaction mechanism still remains unclear,
the most plausible pathway would involve (i) base-assisted cupration
of azole,*” (ii) subsequent oxidative addition of the chloroamine
to the resulting (heteroaryl)Cu(l) intermediate, and (iii) productive
reductive elimination from the Cu(l11) complex.*® Ongoing work
seeks to uncover the detailed mechanism and expand the reaction
scope with chloroamines of high potential in direct C—H amination
chemistry.
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